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Abstract 

An infinite series of secondary building units gener- 
ated around a trigonal axis, with the top and/or  
bottom T atom coinciding with the symmetry axis 
allows the systematic enumeration of a novel class of 
(4; 2)-connected 3D framework structures. Known 
members of this group are the framework topologies 
of tridymite, cristobalite, MAPSO-46 (AFS), CoAPO- 
50 (AFY) and beryllophosphate-H (BPH). Adjacent 
T atoms on a trigonal axis with a T - O - T  bond angle 
of 180 o (T2 unit) present in all structures confer some 
specific properties on this class of compounds. 

Introduction 

The systematic enumeration of (4; 2)-connected 3D 
nets (this notation denotes framework structures 
extended in three-dimensional space with every 
framework T atom being tetrahedrally coordinated 
by oxygen atoms, while every oxygen atom itself is 
connected to two T atoms) has proven to be a valuable 
tool in the structural classification of zeolites and 
molecular sieves (Alberti, 1979; Kerr, 1963; Sato, 
1979; Smith, 1977, 1978, 1979; Smith & Bennett, 1981, 
1984; Barrer & Villiger, 1969; Bennett & Smith, 1985). 
At the same time it predicts the existence of as yet 
unknown phases of potential importance. There are 
several ways of performing such an enumeration: by 
using (i) secondary building units (SBU's) (Meier, 
1968), (ii) various configurations of chains and/or  
sheets (e.g. Barrer, 1984), (iii) polyhedral cages (e.g. 
Smith & Bennett, 1981; Liebau, Gies, Gunawardane 
& Marler, 1986), (iv) various operators (e.g. Barrer, 
1984) such as the sigma (~) transformation 
(Shoemaker, Robson & Broussard, 1973), (v) coordi- 
nation sequences and radial distribution functions 
(Meier & Moeck, 1973, 1979), (vi) coordination 
networks (Sato, 1983; Sato & Ogura, 1981), (vii) 
slipping schemes (Sato & Gottardi, 1982) and (viii) 
the enumeration of 2D nets extended to 3D nets by 
the use of supplementary linkages (e.g. Smith, 1977, 
1979). Detailed structural information on zeolite 
frameworks can be found in the recently revised Atlas 
of Zeolite Structure Types (Meier & Olson, 1987) and 
in a comprehensive review (Smith, 1988). 
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The theoretical derivation of open nets is of much 
interest to the zeolite structural chemist (Barrer & 
Villiger, 1969; Brunner, 1979; Meier, 1986; Smith & 
Dytrych, 1984). 

During the search for an adequate structure model 
for zeolite Linde Q (Breck & Acara, 1961), it soon 
became apparent that the conventional way of pro- 
ceeding (by using hexagonal rings) never could lead 
to a solution for this hexagonal framework (Andries, 
Bosmans & Grobet, 1990). The structure model 
appeared to belong to a novel group of framework 
structures whose systematic enumeration is presented 
here. The present report is the first in a series of three 
papers dealing with framework structures of the 
tridymite group (this report), topologically related 
frameworks (Andries & Bosmans, 1990) and a general 
classification scheme for three-dimensional nets con- 
structed from trigonal columns (Andries, 1990). In 
the third paper a compilation is given of all enumer- 
ated nets and of all definitions, notations and abbrevi- 
ations used throughout. 

Firstly, a new set of cages will be enumerated: a 
non-integral multiple of three T atoms in a hexagonal 
net is only possible if at least one node is coinciding 
with the trigonal symmetry axis. These cages can then 
be connected laterally in two ways to form sheets 
with hexagonal symmetry. Finally, the resulting 
sheets can be joined vertically into 3D nets. 

Establishing the crystallographic basis for the topology 
of (4; 2)-connected 3D nets constructed from 

2 T trigonal cages 

The only way by which hexagonal nets can be con- 
structed with a non-integral multiple of three T atoms 
per unit cell is by placing one or more tetrahedra on 
a trigonal axis, i.e. point positions of type 00 z, 
1/3 2/3 z and 2/3 1/3 z. The present enumeration 
focuses on 3D nets that can be constructed from cages 
between two oppositely oriented tetrahedra on a 
trigonal axis in such a way that the top T atom points 
upwards and the bottom T node points downwards 
(Fig. 1). An infinite number of cages can be thought 
of with any number of off-axis tetrahedra inserted 
between these two. These off-axis T atoms are 
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necessarily coplanar in planes perpendicular to the 
trigonal axis. In our systematic enumeration n 
denotes the number of horizontal stacks between 
these top and bottom T atoms. We are not limited to 
only three off-axis T atoms in the same horizontal 
plane: each stack can contain (3 x m) T atoms, where 
m is a positive integer. The present enumeration has 
been restricted to a maximum value of m = 2. The 
various ways by which adjacent horizontal stacks can 
be connected to form cages can be described by 
building all possible sequences starting from the top 
T atom on the trigonal axis and extending the 
sequence downwards. Two types of cages will be 
enumerated: (i) cages without any single thtee- 
membered ring (S3R) perpendicular to the trigonal 
axis and (ii) cages with such (a) ring(s). 

1. Cages without three-membered ring(s) perpen- 
dicular to the trigonal axis 

First stack: We fix the orientation of the top T atom 
(up). such that it can be linked to three T atoms in 
the first horizontal stack (Fig. 2). Characterizing a 
horizontal stack by its number of trigonally related 
T atoms (3 x m), this first sequence is denoted by 1-3. 

The possible designations for any horizontal stack 
are 1, 3 or 6 because of the restriction to rn = 2 made 
above. The first horizontal stack can only be 3; 1 and 
6 are excluded for obvious reasons: the former possi- 
bility is not plausible, the latter is not possible because 
all atoms of a particular stack are coplanar and each 
of them has to be connected to at least one atom of 
the previous layer. 

_ _ _ <  . . . . .  
I I 

I I 
I t I 
I I I 

n horizontal stacks 

Fig. 1. The construction of  a 2 T trigonal cage. The arrow indicates 
the view direction for Figs. 4 to 8. 
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Fig. 2. The sequence represented is denoted by 1-3. 

Second stack: The second horizontal stack is 
denoted by 1, 3 or 6, as well as by a letter describing 
the particular way by which it is linked to the previous 
layer. There are several ways for doing this: in our 
notation this letter (placed between brackets) will be 
indicated between subsequent stack symbols. This 
letter will only be used if there is more than one 
possibility for connecting subsequent stacks. The 
rules governing the ways of linking subsequent layers 
are represented in Fig. 3. 

A second one-membered stack (1MS) closes the 
cage (1-3-1, simplest trigonal cage). 

A three-membered second stack can be linked to 
the first one in two distinct ways, denoted by S and 
C in Fig. 4 to form 1-3(S)3 or 1-3(C)3. Figs. 4 to 8 
are schematic representations of the connectivities 
down the trigonal axis (indicated by the arrow in Fig. 
1) and are no actual projections in order to avoid 
overlap between subsequent stacks. Returning to Fig. 
4, the symbol S indicates that the connected T atoms 
are situated in the same (S for same) vertical planes 
through the trigonal axis and C indicates the other 
possibility (C for changed). In other words, S and 
C denote an 'eclipsed' and a 'staggered' configuration 
respectively. 

Furthermore, an important difference in con- 
nectivity can be noted between S- and C-connected 

possible possible 

/ Fig. 4 Fag.5 

l J ~  ~6 
cage complet~//~$,C O.L,H,LH 

/ / ei g. 5 / e i  a. 6 k 

1.. -/ 3./ / 1 / ~ a6 
cage S ~ C O, L, H, LH I L,H O, L, H, LH 
complete I not possible I Ol only 

I after C after 0 
not possible 

C not ater 6MS 
possible 
after C 

Fig. 3. Schematic representation of all possible stack sequences, 
starting from the top on-axis tetrahedron in Fig. 1, up to the 
third horizontal stack. Figures represent numbers of  tetrahedra 
in a horizontal stack. Letters refer to modes of linking (with the 
previous layer) illustrated in Figs. 4 to 8. Avoidance rules are 
indicated. 

S C 

Fig. 4. The two possibilities for connecting a second 3 M S  to the 
previous 1-3 sequence are denoted (a) 1-3(S)3 (eclipsed or cis)  

and (b) 1-3(C)3 (staggered or t rans ) .  T atoms are represented 
by circles; oxygen atoms (not shown) lie approximately in the 
middle between two connected T atoms or are not 2-connected. 
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3MS's: the T atoms of an S-connected 3MS have 
only one bond with the previous stack while the T 
atoms of a C-connected 3MS have two, leaving three 
and two free bonds, respectively. 

The second stack can also be six membered and 
there are four distinct ways in which such a stack can 
be connected to the previous 3MS as represented in 
Fig. 5. 

The T atoms of this 6MS can be connected in the 
same layer in three different ways: (i) none of them 
is connected to a T atom of the same stack (Fig. 5a, 
O for open); (ii) the T atoms of this 6MS are intercon- 
nected in pairs. In that case there are two options, 
designated L (Fig. 5b, L for low-membered rings, 
actually S3R's) and H (Fig. 5c, H for high-membered 
rings, actually S5R's); (iii) all T atoms of the 6MS 
form a single six-ring, designated LH [Fig. 5(d), LH 
for low- and high-membered rings, actually S3R's 
and S5R's]. 

Third stack: No two (or more) C-connected 3MS's 
can follow each other because a C-connected 3MS 
has only three free bonds down while it has six bonds 
with the previous 3MS. 

The rules for a 3-6 connection were described 
above (i.e. O, L, H, LH). However, because a 6MS 
needs six bonds at least with a previous stack as well 
as with a subsequent layer, a 6MS cannot succeed a 
C-connected 3MS. A 1MS cannot succeed a 6MS for 
obvious reasons. A 3MS can be linked to a 6MS in 
two distinct ways as visualized in Fig. 6. 

Because there are four possible 1-3-6 configur- 
ations, eight possible 1-3-6-3 sequences result. If the 
6MS is not an S6R, lowest-membered rings [Figs. 
6(a), (c), (e): L] or highest-membered rings [Figs. 
6(b), (d), (f): HI  are formed. If the 6MS is an S6R, 
the sequence of rings (starting from the T atoms of 
the last 3MS and moving to the central T atom) is 
used to assign the designations L [Fig. 6(g), actually 
S3R+S3R] or H [Fig. 6(h), actually S3R+S5R].  

Two subsequent 6MS's can be connected in four 
different ways as represented in Fig. 7. The T atoms 
of the last 6MS can be connected in the same layer 
in three different ways: (i) none of them is connected 
to a T atom of the same stack [Figs. 7(a), (f), (j), 
(n): O); (ii) the T atoms of this 6MS are connected 

in pairs. Criteria similar to those in Fig. 6 were used 
for assigning the designations L [Figs. 7(b), (g), (k), 
(o)] or n [Figs. 7(c), (h), (1), (p)]. (iii) All T atoms 
of the last 6MS form an S6R [Figs. 7(d), (i), (m), 
(q): LH]. Finally, the last 6MS can be Ol-connected 
to a previous O-connected 6MS (Fig. 7e). As can be 

(a) (b) (c) (d) 

2~ stack 0 0 L L 
3,..,st~ L H L H 

2.dstact< H H LH LH 
3~ Stack L H L H 

(e) (f)  (g) (h) 
Fig. 6. There are eight possible 1-3-6-3 sequences. See Fig. 4 for 

explanation on representations. Sequence designations: 
(a) 1-3(O)6(L)3; (b) 1-3(O)6(H)3; (c) 1-3(L)6(L)3; 
(d) 1-3(L)6(H)3; (e) 1-3(H)6(L)3; (f)  1-3(H)6(H)3; 
(g) 1-3(LH)6(L)3; (h) 1-3(LH)6(H)3. 

2~a 

3.d 9 t a c k  

O L H L H  Ol 

(a) (b) (c) (d) (e) 

(f)  (g) (h) (i) 

(j) (k) (l) (m) 

(a) (b) (c) (d) 

0 L H L H  

Fig. 5. The four possibilities for connecting a second 6MS to the 
previous 1-3 sequence are denoted (a) 1-3(O)6, (b) 1-3(L)6, 
(c) 1-3(H)6 and (d) 1-3(LH)6. See Fig. 4 for explanation of 
representations. 

(n) (o) (p) (q) 
Fig. 7. There are seventeen 1-3-6-6 sequences possible. See Fig. 

4 for explanation on representations. Sequence designations: 
(a) 1-3(O)6(O)6; (b) 1-3(O)6(L)6; (c) 1-3(O)6(H)6; 
(d) 1-3(0)6(LH)6; (e) 1-3(O)6(O1)6; (f)  1-3(L)6(O)6; 
(g) I-3(L)6(L)6; (h) 1-3(L)6(H)6; (i) 1-3(L)6(LH)6; 
(j) 1-3(H)6(O)6; (k) 1-3(H)6(L)6; (1) 1-3(H)6(H)6; 
(m) 1-3(H)6(LH)6; (n) 1-3(LH)6(0)6; (o) 1-3(LH)6(L)6; 
(p) 1-3(LH)6(H)6; (q) 1-3(LH)6(LH)6. 
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seen in the figure, this Ol-connected 6MS has 12 
bonds up and six free bonds down. There are 17 
possible 1-3-6-6 sequences. 

Further possibilities: It is evident that most of the 
cited principles can be applied systematically when 
the stacking sequence is extended infinitely. From 
Fig. 3 it is clear that the number of possible sequences 
becomes very high when more than three horizontal 
stacks are involved. No more than two S6R's  can 
follow each other for geometrical reasons. A 3MS 
following a 6MS has only three free bonds down and 
thus cannot be succeeded by a 6MS nor by a C- 
connected 3MS as should be obvious from earlier 
considerations. 

Of specific interest is the sequence 1-3(O)6(O1)6 
(Fig. 7e) which gives rise to two enantiomorphic 
configurations [Figs. 8(a),  (b): A1 and B1] when 
followed by a 3MS or to four sequences of which two 
again are enantiomorphic [Figs. 8(c) to ( f ) :  O, A2, 
B2, LH] with a subsequent 6MS. 

Horizontal stacks with m > 2  (e.g. m = 4  for a 
12MS) can be added following the 1-3(O)6 configur- 
ation represented in Fig. 5(a) (i.e. from the third 
horizontal stack on). This and other possibilities will 
not be treated in any further detail here. The 
hexagonal unit-cell a parameter of the resulting 3D 
nets to be enumerated later becomes quite high. 

A1 B1 

(a) (b) 

2. Cages with at least one three-membered ring perpen- 
dicular to the trigonal axis 

In the preceding enumeration, the possibility of a 
3MS forming an S3R was excluded. This is a special 
case: cages with this type of ring can be enumerated 
more easily starting at the S3R and moving to 
an on-axis T node, because at the other side of the 
S3R a different or identical sequence may occur 
(in the topological symmetry, the S3R may lie in 
a mirror plane perpendicular to the trigonal axis) 
(Fig. 9). 

Let n(1)'  denote the number of horizontal stacks 
between the S3R and the top T atom and n(1)" the 
number of stacks between the S3R and the bottom 
T atom, then n = n (1)' + n (1)" + 1 in general and n = 
2 n ( 1 ) + l  if n(1) '=n(1)"=n(1) (e.g. when the S3R 
lies in a mirror plane). 

The systematic enumeration of all possible sequen- 
ces between an S3R and an on-axis T atom may be 
represented schematically in the same way as in Fig. 
3. Indeed, both the $3 R and the on-axis T atom have 
three free bonds down and the same rules apply as 
above with the following exceptions: 

(i) two sequential 3MS's can be connected S, C 
(Fig. 4) or LH (designating an S3R in analogy with 
an LH-connected 6MS); 

(ii) the sequence S3R-1 [or I (LH)3,  34] (34 is a 
face symbol, denoting a polyhedral cage bounded by 
four three-membered rings) is not plausible and 
neither is the double three-membered ring 
[S3R(LH)3,  D3R, 3243]; 

(iii) an S3R has three free bonds for connecting 
the next stack and for that reason it cannot be fol- 
lowed by a C-connected 3MS nor by a 6MS. Thus a 
3MS succeeding a 6MS can only be L- or H-  
connected (as in Fig. 6). 

O A2 

(c) (a) 

B2 LH 

(e) (f) 

Fig. 8. Further extension of the sequence 1-3(O)6(O1)6 (Fig. 7e) 
with a fourth horizontal stack gives two enantiomorphic pairs 
(a, b) and (d, e). See Fig. 4 for explanation of representations. 
Designations: 
(a) 1-3(0)6(01)6(A1)3; (b) 1-3(0)6(01)6(B1)3; 
(c) 1-3(O)6(O1)6(O)6; (d) 1-3(0)6(01)6(A2)6; 
(e) 1-3~0)6(01)6(B2)6; (f)l-3(O)6(O1)6(LH)6. 

I 
I 

I 

n(1) .......... I .................. 
I 

n ( 1 )  ......... j ................. 
I ,¢ 
t 
I 
I 

Fig. 9. The construction of a 2 T trigonal cage by inserting horizon- 
tal stacks at both sides of an S3R perpendicular to the trigonal 
axis. 
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Table 1. The 56 possible distinct group A 2 T trigonal 
cages constructed from up to eight horizontal stacks; 

see Fig. 4 for explanation of symbols 

With n = 1, there is one possible cage which cannot be denoted 
by a shorthand description. 

n = 6  n =7  

SSSSS SSSSSS 
SSSSC SSSSSC 
SSSCS SSSSCS 
SSCSS SSSCSS 
SSCSC SCSCSC 
SCSCS CSCSSC 
SCSSC SSSCSC 
CSSSC SSCSCS 
CSCSC SSCSSC 

SCSSCS 
SCSSSC 
CSSSSC 

n = l  n = 2  n = 3  n = 4  n = 5  

/ S s s  SSS SSSS 
C SC s s c  SSSC 

SCS SSCS 
CSC SCSC 

CSSC 

n = 8  

SSSSSSS 
SSSCSSS 
SSCSSSS 
SCSSSSS 
CSSSSSS 
SSCSCSS 
SCSCSSS 
CSCSSSS 
SCSSCSS 
CSSCSSS 
SCSSSCS 
CSSSCSS 
CSSSSCS 
CSSSSSC 
SCSCSCS 
CSCSCSS 
SCSSCSC 
CSSCSCS 
CSSSCSC 
CSSCSSC 
CSCSCSC 

Table 2. Summarizing the 186 possible distinct group B 
2 T trigonal cages constructed from up tofive horizontal 
stacks, according to the number of stacks and the num- 

ber of T atoms building the stacks 

Because all cages contain six-membered stacks and a stack of  that 
type cannot be adjacent to a 1MS, no cages result with n < 3. 

n Sequence Different cages 

1 / 0 
2 / 0 
3 1-3-6-3-1 7 
4 1-3-3-6-3-1 8 

1-3-6-6-3-1 22 
5 1-3-3-3-6-3-1 16 

1-3-3-6-3-3-1 7 
1-3-6-6-6-3-1 92 
1-3-3-6-6-3-1 34 

drawings for cages 1 - 3 ( H ) 6 ( H ) 3 - 1 ,  1 -3(H)6(L)-  
6 (H)3-1  and 1-3(H)6(H)3(S)3(H)6(H)3-1 are 
given in Figs. 10(bl) ,  (b2) and (b3), respectively. 

Finally, cages with at least one S3R perpendicular 
to the trigonal axis (designated 2 T trigonal cages of 
group C) will be enumerated also. A systematic 
enumeration of all possible sequences between the 

Detailed enumeration of the possible 2 T trigonal cages 

The designation of a horizontal stack sequence for a 
cage containing only 3MS's without any 3MS inter- 
linked into an S3R (designated a 2T trigonal cage 
of group A hereafter) can be represented by means 
of a shorthand description, because stacks of this type 
can only be S- or C-connected. For example, the 
1-3(S)3(S)3(C)3-1 notation may be shortened to 
SSC. The first letter of the sequence then refers to 
the second horizontal stack, leading to a particular 
sequence being composed of n - 1 letters. All possible 
sequences for a given value of n can be derived 
theoretically, the total number being 2 "-~. Two 
'inversed' sequences lead to the same cage (e.g. cage 
SCSSC is identical to cage CSSCS). Up to n = 8, the 
total number of cages is 56 (Table 1). Schematic rep- 
resentations for cages $, CSSC and CSCSC are given 
in Figs. 10(a l ) ,  (a2) and (a3),  respectively. 

When limiting ourselves to cages with 3MS's and 
6MS's, excluding cages with (an) S3R(s)  perpen- 
dicular to the trigonal axis (designated 2T trigonal 
cages of group B), 186 different cages were enumer- 
ated up to n = 5. These are summarized in Table 2. 
'Inversed' sequences again lead to the same cage. As 
an example, cage 1-3(LH)6(H)6(L)6(L)3-1 is iden- 
tical to cage 1-3(L)6(L)6(LH)6(H)3-1.  

It should be noted that an O-connected 6MS has 
eighteen free bonds. Therefore, the subsequent stack 
may have an m value exceeding 2. As stated before, 
this possibility will not be considered. 

It is clear from Table 2 that the total number of 
possible cages becomes very high when n exceeds 5. 
A shorthand notation is no longer possible. Schematic 

/¢mx. 
zz/" ~ .  

if i "! 
I 
I 
i 

II ~ / , /  

( a l )  

;',,, 
' i  "y / ; d  

" i d  

(b l )  

/ , , ,  .,+,.. 
fi.~ . . 

r Y~ 

I Y ', ill 

/)' ~. "y  -) 

, - ' ,  4' ! ! ', 

(a2) (a3) 

--" 
-? 

, , ,  '., I ~ .  ;, 
t__a~ . . . . .  ~;-_~ . . . .  w,,, , , ' \ /  -+-->/, ? 

' - . .Q.. .- '  

(b2) (b3) 
. . ~  .~. ilk 

\--- 7 
,,, cr"  
/"=T',,, 
' 3 ;  

(cl) (c2) 
Fig. 10. 2T trigonal cages of  (a)  group A: (a l )  1-3(S)3-1 or S, 

(a2) 1 - 3 ( C ) 3 ( S ) 3 ( S ) 3 ( C ) 3 - 1  or CSSC,  
(a3) 1 - 3 ( C ) 3 ( S ) 3 ( C ) 3 ( S ) 3 ( C ) 3 - 1  or C S C S C ;  (b) group B: 
(bl)  1-3(H)6(H)3-1,  (b2) 1 - 3 ( H ) 6 ( L ) 6 ( H ) 3 - 1 ,  
(b3) 1 - 3 ( H ) 6 ( H ) 3 ( S ) 3 ( H ) 6 ( H ) 3 - 1 ;  and (c) group C: 
(cl) 1 - 3 ( L H ) 3 ( S ) 3 - 1 ,  (c2) 1 - 3 ( C ) 3 ( L H ) 3 ( S ) 3 ( C ) 3 - 1 .  T atoms 
are represented by squares whose size is proportional to the 
distance from the eye; oxygen atoms (not shown) lie approxi- 
mately in the middle between two connected T atoms or are not 
2-connected. Note that cages have been drawn with different 
scalings. (Chem-X, developed and distributed by Chemical 
Design Ltd, Oxford, England.) 
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Table 3. Summarizing the 74 possible distinct group D 
1 T trigonal cages up to n (1) = 4, used for the subsequent 
enumeration of  the 101 possible distinct group C 2T  

trigonal cages up to n = 6 

n (1) Sequence  Different cages 
0 / 0 
1 S3R-3-1  1 
2 $ 3 R - 3 - 3 - 1  2 
3 $ 3 R - 3 - 3 - 3 - 1  4 

$ 3 R - 3 - 6 - 3 - 1  8 
4 $ 3 R - 3 - 3 - 3 - 3 - 1  9 

$ 3 R - 3 - 3 - 6 - 3 - 1  8 
$ 3 R - 3 - 6 - 3 - 3 - 1  8 
$3 R - 3 - 6 - 6 - 3 - 1  34 

S3R and an on-axis T atom (Fig. 9) results in the 
total of 74 different sequences up to n(1)= 4. These 
sequences are summarized in Table 3. 

In order to enumerate all possible sequences 
between two on-axis T atoms (as in Fig. 1) up to 
n = 6, each sequence derived in Table 3 (at one side 
of the S3R)  can be combined ~tth every sequence 
of the same table (at the other side of the S3R)  as 
long as n = n ( 1 ) ' + n ( 1 ) " + l  does not exceed 6. 
Accounting for the fact that two 'inversed' sequences 
lead to the same cage, the total number of different 
sequences adds up to 101. To illustrate this enumer- 
ation, sequence S3R-3(LH)3(S )3 -1  [n (1 ) '=3]  can 
be combined with $3R-3(S)3-1  [n(1)"= 2] to result 
in cage I -3 (LH)3(S )3 (LH)3(S )3 (S )3 -1  ( n = 6 ) ,  
which is identical to cage 1-3(S)3(LH)3(S)3(LH)-  
3(S)3-1. Schematic drawings for cages 1-3(LH)- 
3(S)3-1 and 1-3(C)3(LH)3(S)3(C)3-1  are given in 
Figs. 10(cl) and (c2), respectively. 

Some general remarks: 
(i) from the previous enumeration, the total of 218 

different cages can be derived up to n = 5; 
(ii) all group A cages are composed of even- 

membered rings only (e.g. Fig. 10a); all group B and 
group C cages are composed of odd- (and even-) 
membered rings [e.g. Figs. 10(b) and (c)]; 

(iii) practically all 2T trigonal cages enumerated 
have only one trigonal axis. Nevertheless, for two 
types of cages, all T atoms (in pairs) lie on a trigonal 
axis: firstly the 1-3(C)3-1 (D4R,  46) cage (group A) 
and secondly the 1-3(H)6(H)6(H)3-1  [512, penta- 
gondodecahedron, rd (Smith, 1988)] cage (group B); 

(iv) From Fig. 10(c) it is derived that the T atoms 
of an S3R [and of any (3 x m) ring perpendicular to 
the trigonal axis in general] share all bonds in the 
cage, leaving no bonds for linking neighbouring cages 
laterally. 

Generalized enumerations 

A cage between two on-axis tetrahedra (as in Fig. 1) 
was called a 2T trigonal cage; a cage between an 
on-axis T atom and a threefold ring [as in Fig. 9: the 

three-ring is in general a (3 x m) ring in the horizontal 
plane] is designated a 1 T trigonal cage, and a cage 
between two threefold rings perpendicular to the 
same trigonal axis is called a 0 T trigonal cage. 

All 2 T trigonal cages having at least one threefold 
ring perpendicular to the trigonal axis can be regarded 
as being composed of face-sharing cages, i.e. 1T 
trigonal cages (one threefold ring) or 1T and 0T 
trigonal cages (more than one threefold ring). Face 
sharing occurs at the threefold rings perpendicular 
to the trigonal axis. 

1T trigonal cages between an on-axis T atom and 
an $3 R belong to group D, those between an on-axis 
T atom and an S6R belong to group E. OT trigonal 
cages between two S3R's belong to group F, those 
between two S6R's to group G and those between 
an S3R and an S6R belong to group H. It is clear 
that two 0 T trigonal cages of group H can be regarded 
as a group F or a group G cage when they share 
S6R's or S3R's,  respectively. 

n(1) is the number of horizontal stacks for cages 
of groups D and E, and n(2) denotes the number of 
horizontal stacks between two threefold rings for 
cages of groups F to H. 

Along the same lines, the foregoing enumeration 
can further be extended with a few simple transforma- 
tions. In general, a threefold ring perpendicular to 
the trigonal axis may be replaced by a 0T trigonal 
cage of the appropriate group. Furthermore, an S3R ' 
may be replaced by two adjacent on-axis T atoms 
(T2 unit). This is only so if the T atoms of this unit 
are symmetry related by a mirror plane perpendicular 
to the trigonal axis [designated the T2m unit, Fig. 
19(bl)], but not if they are symmetry related by an 
inversion centre [designated the T2i unit, Fig. 19(b2)]. 
An illustrative example can be seen in Fig. 10(cl), 
where the 2T trigonal cage 1-3(LH)3(S)3-1 is rep- 
resented. This cage is composed of two 1T trigonal 
cages [1-3(LH)3,  3153] sharing S3R's. The 3~53 
trigonal cage belongs to group D [n(1)=  1]. It can 
easily be derived from this figure that the S3R may 
be replaced by either the TErn unit, converting the 
3153 cage into the 43 cage (simplest trigonal cage), or 
by a 0 T trigonal cage of group F. 

Constructing three-dimensional lattices: 
from cages to 3D nets 

Hexagonal sheets constructed from 2 T trigonal cages 

There are two distinct ways by which 2 T trigonal 
cages can be linked laterally to form sheets with 
hexagonal symmetry. These two possibilities have 
been described systematically in the literature for the 
case of hexagonal frameworks constructed from 0T 
trigonal cages of group G (Smith & Bennett, 1981; 
Barter & Villiger, 1969; Tambuyzer, 1977). 
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Firstly, neighbouring 2 T trigonal cages can be sym- 
metry related by mirror planes parallel to the trigonal 
axis as was described (Burrer & Villiger, 1969) for 
hexagonal frameworks of the LTL group [fourth 
column of Table 4 in the paper of Barter & Villiger, 
Fig. 11(b)] and the LTL-related group [fifth column 
of Table 4 in the paper of Burrer & Villiger, Fig. 
11(c)]. A limited number of 2T trigonal cages enu- 
merated before can in this way be linked laterally 
with identical cages as visualized in Fig. 12(a), (b) 
and (c) for cages represented in Figs. 10(a), (b) and 
(c), respectively. Figs. 13 and 14 illustrate this for the 
CSC cage [2 T trigonal cage in the Linde Q topology 
(Andries, Bosmans & Grobet, 1990)]. It is obvious 
that the cage is linked to five others: three in the 
plane, one above and one below [characteristic for 
all frameworks of the tridymite group (to be described 
later) constructed from isolated 2T trigonal cages]. 
It can be seen from Fig. 14 that a typical hexagonal 
unit cell encompasses two 2 T trigonal cages (except 
in cases where neighbouring cages share faces, see 
further). The figure is general for hexagonal sheets 
made of C(SC),  type cages ( r=odd) .  Projections 
onto the hexagonal (001) plane for hexagonal sheets 
made in this way from cages that were visualized in 
Figs. 10(a), (b) and (c) are given in Figs. 15(a), (b) 
and (c), respectively. 

A second way for connecting neighbouring 2T 
trigonal cages to form hexagonal sheets is across a 
threefold axis parallel to the cage's trigonal axis, as 
was described systematically (Smith & Bennett, 1981; 
Tambuyzer, 1977) for the case of hexagonal 
frameworks constructed from 0T trigonal cages of 
group G that belong to the ABC-6 group (chabazite 
group) of zeolites and related materials (Fig. 11a). 
Again, hexagonal sheets are formed. The projection 
onto the (001) plane for a hexagonal sheet made of 
1-3-1 cages is represented in Fig. 16. In this type of 
3D net, the 2T trigonal cages are connected to eight 
identical ones: six in the plane, one above and one 
below. 

I \ I / x I / 

/ I \  / ' ( \  
(a) (b) (c) 

Fig. 11. Connecting trigonal columns laterally to form 3D nets. 
OFF columns are represented with full lines and their connec- 
tions with dotted lines. Hexagonal unit cells and the main sym- 
metry operatorg are indicated. (a) OFF (Gard & Tait, 1972); 
(b) LTL (Barrer & Villiger, 1969); (c) hypothetical LTL-related 
3D net (Barrer & Villiger, 1969). In (b) high-membered rings 
(SSR) and in (c) low-membered rings (S4R) are formed between 
neighbouring columns. 
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Fig. 12. The connection of 2 T trigonal cages to form simple group 
1 nets of the tridymite group. Each time, four cages have been 
represented in order to show their connections parallel to the 
trigonal axis, as well as laterally. Note the eight-ring formed 
between four cages (channel system A). The cages in (a), (b) 
and (c)" correspond to the cages in Figs. 10(a), (b) and (c), 
respectively. Figures denote net numbers. See Fig. 10 for expla- 
nation on representations. (Chem-X, developed and distributed 
by Chemical Design Ltd, Oxford, England.) 
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Fig. 13. Connect ing CSC (4663) cages to form a group 1 net of 
the tridymite group. Letters refer to other CSC cages. 
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Hexagonal 3 D nets of  the tridymite group 

Identical hexagonal sheets can be stacked onto 
each other by linking the 2 T trigonal cages via oxgen 
bridges (forming T2 units) along their trigonal axes 
to form simple nets of the tridymite group, as represen- 

4,8 
Fig. 14. The lateral connection of neighbouring 2T trigonal cages 

of the C(SC)r (r = odd) series to form a simple hexagonal sheet. 
View along the hexagonal c axis. Cages are represented with 
full lines and their connections with dashed lines. Note the 
hexagonal unit cell bounded by mirror planes and the position 
of the cages at x = 2/3, y -- 1/3 and at x = 1/3, y = 2/3. Figures 
are net numbers. 
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Fig. 15. Schematic drawings of the projection onto the hexagonal 
(001) plane for some simple group 1 nets of the tridymite group 
constructed from (al  to a3) group A, (b) group B and (cl and 
c2) group C 2T trigonal cages that were represented in Figs. 
10(a), (b) and (c), respectively. Figures denote net numbers. 
Hexagonal unit cells are indicated. See Fig. 10 for explanation 
of representations. In (a 1), 2T trigonal cages are represented 
with bold lines. (a3) is characteristic for nets constructed from 
C(SC)r ( r=even)  type cages; (b) is characteristic for nets 
formed from 2 T trigonal cages that contain any combination of 
the 3(H)6(H)3 and/or  the 3(H)6(L)6(H)3 sequence(s); (c2) 
refers to nets constructed from 1-[3(C)3],(LH)3[(S)3(C)3]w - 
1 type cages. (Chem-X, developed and distributed by Chemical 
Design Ltd, Oxford, England.) 

ted in Fig. 12: sheets are symmetry related by transla- 
tion along [001] (the hexagonal c axis) and the unit- 
cell c parameter is equal to the sheet thickness. 

Non-simple nets are characterized by at least one 
of the following two features: 

(i) the hexagonal sheets are not ~imple, e.g. they 
are made of more than one type of 2 T trigonal cage 
and/or neighbouring cages are displaced along [001] 
(e.g. neighbouring cages in the same sheet are sym- 
metry related by c glides or threefold screw axes); 

(ii) neighbouring hexagonal sheets are not sym- 
metry related by translation along [001]. 

Most emphasis will be on framework structures 
where neighbouring 2T trigonal cages in the same 
hexagonal sheet symmetry related by mirror planes 
parallel to the trigonal axis (designated group 1 
frameworks of  the tridymite group). This mode of 
linking is most common for established materials with 
frameworks constructed from 2 T trigonal cages. The 
second way of symmetry-relating neighbouring 
trigonal cages is most common for established 
materials with frameworks made of 0T trigonal 
(group G) cages. The designation group 2 frameworks 
of the tridymite group is used to denote nets made of 
2 T trigonal cages that are symmetry related by three- 
fold axes. A complete systematic enumeration of all 
possible 3D nets is beyond the scope of this paper 
and a detailed crystallographic compilation will be 
published in the future. 

Enumeration of  group 1 3 D nets of the tridymite group 

Group 1 nets constructed from group A, B and C 
cages will be treated in that sequence. In each 
instance, some simple and related non-simple nets 
will be discussed. 

All group 1 frameworks constructed from isolated 
2 T trigonal cages are characterized by a 2D intersect- 
ing channel system, formed by more or less distorted 
eight-rings along [100], [010] and [110] (called chan- 
nel system A hereafter). If a supplementary channel 

>.- 
>_.>- 

7- >- 

7- 
55 

Fig. 16. Schematic drawing of the projection onto the hexagonal 
(001) plane for net 55 .2T  trigonal cages are represented with 
bold lines. The hexagonal unit cell is indicated. See Fig. 10 for 
explanation on representations. (Chem-X, developed and dis- 
tributed by Chemical Design Ltd, Oxford, England.) 
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system is present, it will be described for the specific 
structure. 

Simple nets from group A cages: Eight simple nets 
were derived from group A 2 T trigonal cages. 

With n = 1, one possibility exists (net 1, cage 1-3- 
1). The 2T trigonal cage is identical to the TsO~o SBU 
of the natrolite group (Meier, 1968) but with its 
trigonal axis parallel to the hexagonal c axis. 

With n = 2, two structures were derived. The first 
(net 2, cage S) [Figs. 10(al),  12(al),  15(al)]  was 
previously described by Smith (1978) as his struc- 
ture type 8b. The second structure (net 3, cage C) 
is the framework of the recently described phase 
CoAPO-50 (AFY) (Bennett & Marcus, 1987) which 
consists entirely of D4R units. It has a 1D twelve- 
ring channel along [001] intersecting with channel 
system A. 

With n = 3 or n = 7, no simple sheets (and thus no 
simple nets) could be constructed. 

With n =4,  one structure (net 4, cage CSC) was 
derived which is the framework of the synthetic zeolite 
Linde Q of Breck & Acara (1961) (Andries, Bosmans 
& Grobet, 1990). It was shown that the framework 
topology of beryllophosphate-H is also that of net 4, 
which was assigned therefore the structure type code 
BPH (Harvey & Meier, 1989). The hexagonal sheets 
are translated along [001] in the BPH structure, 
whereas they are rotated by 180 ° parallel to (001) in 
the (non-simple) framework of the recently described 
phase MAPSO-46 (AFS) (Bennett & Marcus, 1987), 
assigned now net 4b. The transformation that rotates 
neighbouring hexagonal sheets by 180 ° parallel to 
(001) in a 3D net will be designated the R180 transfor- 
mation hereafter; neighbouring 2T trigonal cages 
along the trigonal axis are rotated by 60 ° around [001] 
when the R180 transformation is applied to simple 
nets, and the hexagonal c parameter of the resulting 
non-simple nets is twice the height of the constituent 
2T trigonal cage. The 2T trigonal cage present in 
both nets 4 and 4b has recently been designated the 
afo unit (Smith, 1988). Both structures have a 1D 
twelve-ring channel along [001], intersecting with 
channel system A. 

With n =5,  one net (net 5, cage CSSC) [Figs. 
10(a2), 12(a2), 15(a2)] was constructed. It is charac- 
terized by circular 2D channels (formed by eight- 
rings), intersecting through windows of the same type 
and running parallel to, but isolated from, channel 
system A. 

With n = 6, two new nets were derived. The first 
(net 6, cage CSCSC) [Figs. 10(a3), 12(a3), 15(a3)] 
has a 1D twelve-ring channel along [001 ], intersecting 
with channel system A and the second (net 7, cage 
CSSSC) is characterized by a similar channel system 
as present in the type 5 structure, but with the circular 
channels being formed by ten-rings. D6R subunits 
occur in the type 7 structure. 

With n = 8, one net (net 8, cage CSCSCSC) was 
derived with a similar channel system as in nets 3, 4 
and 6. 

It should be noted that all cages of type C(SC),  
(where r is zero or a positive integer) can form simple 
frameworks. Cages of type C(S),C with t > 3 cannot 
form structures of the tridymite group because D6R's  
are present sharing S6R's. 

Some important crystallographic data for these 
eight simple framework topologies are compiled in 
Table 4. The unit cell and atomic positional param- 
eters were refined by DLS (Baerlocher, Hepp & 
Meier, 1977), assuming T-O distances of 1-68/~ 
[calculated for an Si/AI = 1.0 framework according 
to Ribbe & Gibbs (1969)], and O-O and T - T  dis- 
tances calculated according to an ideal O - T - O  
tetrahedral angle and a mean T-O-T  angle of 140 °. 
In some cases, the agreement R factor was lowered 
by permitting the T-O distances to vary between the 
values for pure Si-O and A1-O bonds. The calcula- 
tions were performed assuming space group P31m 
for nets 1, 2 and 3, P31 m for net 6 and P321 for nets 
4, 5, 7 and 8. 

Non-simple nets from group A cages: Non-simple 
nets can be constructed from either identical but 
mutually rotated (e.g. by the R180 transformation) 
hexagonal sheets, or from different hexagonal sheet 
types. Application of the R180 transformation to the 
simple nets 3, 6 and 8 results in nets 3b, 6b and 8b, 
respectively. The hexagonal sheets are symmetry 
related by inversion in nets 3, 4b, 6 and 8b, and by a 
mirror plane in nets 1, 2, 3b, 4, 5, 6b, 7 and 8. It is 
obvious that more complex stacking variations are 
possible. 

Other non-simple nets can be formed from different 
types of hexagonal sheets: sheets of nets 1 and 2 can 
be stacked immediately on top of each other due to 
their very similar a parameter (Table 4), giving nets 
with a hexagonal c repeat of approximately [(7.2p) + 
(9.7q)]/~, where the meaning of p and q is evident 
from Table 4. Structure types 9 (p = 1, q = 1) and 10 
(p = 2, q = 1) have a c repeat of approximately 16.9 
and 24.1/~, respectively. Similarly, hexagonal sheets 
of nets 4 to 8 can be stacked. 

Simple nets from group B cages: Five simple nets 
made of isolated group B 2T trigonal cages can be 
constructed from cages 1-3(H)6(H)3-1 ,  1- 
3(H)6(L)6(H)3-1, 1-3(H)6(H)3(S)3(H)6(H)3-1, 
1-3(H)6(L)6(H)3(S)3(H)6(L)6(H)3-1  and 1-3(H)-  
6(H)3(S)3(H)6(L)6(H)3-1. They were assigned 
numbers 19 [Figs. 10(bl), 12(bl), 15(b)], 20 [Figs. 
10(b2), 12(b2), 15(b)], 21 [Figs. 10(b3), 12(b3), 
15(b)], 22 and 25, respectively. 

Two simple frameworks can be constructed from 
face-sharing 2 T trigonal cages: (i) the 4356 cage [Fig. 
10(bl)] of the type 19 structure can share S4R's to 
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Table 4. Crystallographic data for some simple nets of the tridymite group 

M S G  = maximum space-group symmetry; T U C  --- n u m b e r  o f  tetrahedral atoms in the hexagonal unit cell; I T  = n u m b e r  o f  non-equivalent 
tetrahedral atoms fo r  M S G ;  F D  = f r a m e w o r k  density (number of  tetrahedral atoms per unit v o l u m e  o f  1 0 0 0 / I s ) ;  Vf = void  fraction 
(g cm-3) ,  calculated according to the experimentally derived relation Vf = ( - 0 . 0 3 7 5 F D )  + 0.975 (Breck,  1973); S B U  = secondary building 
unit as defined by Meier (1968); RF=establ i shed materials with the framework topology described; REF=reference  to the first 
description of  the net topology. The letters A, B, K and  L designate the sequences 3 ( H ) 6 ( H ) 3 ,  3 ( H ) 6 ( L ) 6 ( H ) 3 ,  3 ( L H ) 3 ( S ) 3  and 
3 ( C ) 3 ( L H ) 3 ( S ) 3 ( C ) 3  respectively; square brackets stand fo r  1MS ' s  bounding the cages. 

Sequence M S G  T U C  IT  C a g e  a (/~) c (A)  F D  S B U  Net n Vf R F  R E F  

Group 1 nets 
1 1 / P6/mmm 10 2 TsOto 10.19 7.21 15.4 0.40 TsOlo / / 

43 1-~3=--1 

2 2 S P6/mmm 16 2 TsO16 10-22 9.66 18.3 0.29 7"40 s / (1) 
63 1---3 

3 2 C P31 m 16 2 T8016 12-74 8.96 12.7 0.50 ?'40 8 AFY (2) 
46 1_=3 

4 4 CSC P62m 28 3 T1402s 13.56 13-38 13" 1 0-48 T7014 BPH (3, 4) 
4663 1 _= 6 

5 5 CSSC P62m 34 4 T17034 13.27 15.19 14.7 0.42 T17034 / / 
4683 1--=6-=3-=6-= 1 

1_=6+$6R 
6 6 CSCSC P31m 40 4 T2oO4o 13-25 18"43 14.3 0"44 TloO2o / / 

4666 1 =- 6 _= 3 

7 6 CSSSC P62m 40 4 T2oO4o 13.30 17.31 15.1 0.41 TloO2o / / 
46103 1 _=6---3 

1 -= 6 + $ 6 R  
8 8 CSCSCSC P62m 52 5 T26052 13.71 22.33 14.3 0.44 T13026 / / 

4669 1 _= 6_= 6 

11 3 [K]  P6/mmm 22 3 TllO22 10"47 12-01 19"3 0"25 1 ------3 / / 
56 + S3 R 

12 5 [L] P62m 34 4 T17034 13"52 16"10 13-3 0.47 1 -= 6 / / 
4656 +S3R 

19 3 [A] P6/mmm 28 3 7"14028 15.29 11.11 12.4 0.51 1 - 1  / / 
4356 +S4R 

20 4 [B] P6/mmm 40 3 T2oO4o 15.70 13.95 13.4 0.47 1 - 1 / / 
435663 +S6R 

21 6 [A(S)A] P6/mmm 52 4 T26052 15.47 18.51 13.6 0-47 1 - 1 / / 
465683 + S4 R 

22 8 [B(S)B] P6/mmm 76 4 T38076 15-84 23.85 14.7 0.43 1 - 1 / / 
46566683 -4- $6 R 

25 7 [A(S)B] P6mm 64 9 7"32064 15.64 21.06 14.3 0.44 1 - 1 / / 
46566383 +S4R 

+S6R 

Nets constructed from face-sharing 2 T trigonal cages 
23 3 [A] P6/mmm 16 

24 4 [ B] P6/mmm 22 

3 TlaO2s 10-84 10-88 14.4 0-43 1 - 1 / / 
4356 +S4R 

3 T2oO4o 10.63 13-87 16.2 0.37 1 - 1 / / 
435663 +S6R 

Group 2 nets 
55 1 1-3-1 P6m2 5 2 TsOlo 7-47 7"22 14.3 0.44 1 =-- 3 -= 1 / / 

43 

References: (1) Smith (1978); (2) Bennett & Marcus (1987); (3) Harvey & Meier (1989); (4) Andries, Bosmans & Grobet (1990). 

form a hexagonal sheet (simple net 23), and (ii) the 
435663 cage [Fig. 10(b2)] of  the type 20 structure can 
share S6R's to form a hexagonal sheet (simple net 
24, Fig. 17). 

Structures made of face-sharing trigonal cages have 
no appreciable channel system. The lateral connec- 
tions between two isolated 2T trigonal cages form 
D4R's (nets 19 and 21), D6R's  (nets 20 and 22) or 
both (net 25). In nets 20, 22 and 25, D12R's  restrict 
the dimensions of the 1D channel along [001]. In the 
type 24 structure, D6R's  occur restricting the channel 

dimension along [001]. The type 23 structure can also 
be constructed from the 51268 0T trigonal cage (group 
G) [designated the dooh cage (Smith, 1988)], also 
present in the structure type DOH (Gerke & Gies, 
1984). In the type 24 structure, colums of alternating 
D6R and 51268 cages occur parallel to the hexagonal 
axis. The 435663 cage occurring as an isolated and a 
fundamental (Liebau, Gies, Gunawardane & Marler, 
1986) cage in structure types 20 and 24, respectively, 
has been designated the dooh cage (Smith, 1988). 
Structure types 23 and 24 should be classified as 
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clathrasils. Structure type 19 can also be constructed 
from 4125n86122 cages, sharing S8R's parallel to 
(110), (i20), (i20), (2i0) and (2i0), and S12R's 
parallel to (001). Columns of alternating D12R and 
41251286122 cages occur in net 20. The 51268 (doh) cage 
can easily be converted into the 41251286122 cage by 
the application of the same tr transformations 
(Shoemaker, Robson & Broussard, 1973) that convert 
the S6R into the S12R. o- transformations interrelat- 
ing these seven nets are represented in Fig. 18. 

Some important crystallographic data for these 
seven simple nets are compiled in Table 4. Refinement 
of the unit cell and atomic positional parameters with 
DLS was done assuming space group P31 m for nets 
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Fig. 17. Similar drawings to those in Figs. 12 and 15 for net 24. 
Note that the eight-rings (channel system A) in Fig. 12 are 
reduced to six-rings. Note also the presence of 51268 cages (in 
b) that are bounded  by twelve 435663 cages (six per hexagonal 
sheet). In (b) the hexagonal unit cell is indicated. Figures are 
net numbers. See Fig. 10 for explanation on representations. 
(Chem-X, developed and distributed by Chemical Design Ltd, 
Oxford, England.) 

o r ( t o o ) ,  ( o , o ) ,  ( , - , o ) ]  
2 3  > 1 9  

o, oo,, 1 lo, oo,, 

24  > 2 0  
o t ( , o o ) , < o , o ) , ( , - , o ) ]  

21 

21 

o ( o  o , o / a )  and 
• 2 2  

0 ( 0  0 1 0 / 7 )  
I 0 ( o  o 1 o / 7 )  

o r  
0 ( 0  o 2 0 1 3 )  

0 ( 0  0 1 0 / 3 )  o r  
) 2 5  

a(O 0 1 0 1 7 )  

Fig. 18. or transformations interrelating some simple group 1 nets 
of the tridymite group constructed from group B 2T  trigonal 
cages. Figures are net numbers. The l Miller indices of the planes 
at which o- transformations interrelate nets 21, 22 and 25 rep- 
resent approximate values. 

19, 20 and 25, P62m for nets 21 and 22, and P321 
for nets 23 and 24. 

It should be noted that cages of types 1- 
[3(H)6(H)3]~-I  (net 19: s = l ;  net 21: s = 2 )  and 
1-[3(H)6(L)6(H)3],~-I (net 20: v = 1; net 22: v = 2 )  
(s and v are positive integers) can all form simple 
frameworks. If the sequence 3(H)6(H)3 is denoted 
by A and 3(H)6(L)6(H)3 by B, then 2T trigonal 
cages can be made with all possible sequences of A 
and B. As an example, net 25 contains both the A 
and B sequences once. 

Some 2 T trigonal cages containing at least one S6R 
perpendicular to the trigonal axis are interesting. They 
can all be constructed from face-sharing 0T and/or  
1 T trigonal cages of group G and E, respectively. 
Some of these 2 T trigonal cages can form simple nets, 
but no DLS refinements were done to show whether 
these are possible. 

An infinite number of cages exists by repeating a 
particular horizontal stack sequence or by combining 
different sequences (as was already mentioned for 
sequences denoted by A and B). In principle, each 
horizontal stack sequence beginning and ending with 
a 3MS can be repeated infinitely or be combined with 
other similar sequences. Furthermore, each I T  
trigonal cage can be combined with another to give 
a 2T trigonal cage by sharing S6R's. Finally, any 
S6R can be replaced by a 0T trigonal cage of group 
G as for example the D6R [4662, n(2)=0] ,  the e 
(cancrinite) [4665, n(2)= 1] or the 366283 In (2 )=2]  
cage. 

Non-simple nets from group B cages: Non-simple 
net 25b is made of type 25 hexagonal sheets with 
neighbouring sheets being symmetry related by a 
mirror plane. Its hexagonal c repeat is twice that of 
net 25. 

Because of the structural analogy of their 2T 
trigonal cage and the comparable a parameter of the 
respective simple nets (Table 4), hexagonal sheets of 
nets 19, 20, 21, 22 and 25 can be stacked at random, 
as can the sheets of nets 23 and 24. Structure type 26 
is composed of alternating type 19 and type 20 sheets, 
and net 27 of alternating type 23 and type 24 sheets. 
Both nets have a c repeat of approximately 25 A. 

Simple nets from group C cages: 2 T trigonal cages 
of group C are made of at least one S3R perpen- 
dicular to the trigonal axis as was explained earlier. 
It should be noted that nets constructed from cages 
with the S3R lying in a mirror plane perpendicular 
to the trigonal axis should be examined first, because 
of the well accepted rule of parsimony, stating that 
symmetrical cages are the most promising candidates 
to form real framework structures. This applies to at 
least three group C cages. The first two are repre- 
sented in Fig. 10(c): the 1-3(LH)3(S)3-1 cage 
[Fig. 10(cl), resulting net 11] and the 1-3(C)3(LH)- 
3(S)3(C)3-1 cage [Fig. 10(c2), resulting net 12]. 
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In net 11 [Figs. 10(cl), 12(cl), 15(cl)], the chains 
around the trigonal axes are composed of 1 T trigonal 
cages (3153), alternate S3R's shared and T2~ linkages 
formed [Fig. 12(cl)]. Six columns of this type sur- 
round a column made of alternating 68 and 6286 cages 
sharing S6R's. Channel system A is the widest chan- 
nel system in the structure. Net 11 can be derived 
from net 1 by substituting all TErn units [Fig. 19(bl)] 
in alternate layers parallel to (001) by S3R's. In net 
12 [Figs. 10(c2), 12(c2), 15(c2)], the chains around 
the trigonal axes are made of 1 T trigonal cages 
(314353), alternate S3R's shared and T2m linkages 
formed [Fig. 12(c2)]. Six chains of this type surround 
the 1D twelve-ring channel along [001]. Between two 
laterally linked 2 T trigonal cages, a 425461101 subunit 
is formed [Fig. 12(c2)]. The 1D twelve-ring channel 
along [001] is made up of alternating 41886122 and 
4651266122 cages, sharing non-planar S12R's. 

Some important crystallographic data for nets 11 
and 12 are compiled in Table 4. Refinement of the 
unit cell and atomic positional parameters with DLS 
was done assuming space group P321 for both struc- 
ture types. 

All group C trigonal cages of type 1- 
[3(C)3]u(LH)3[(S)3(C)3]w-1 can form simple nets. 

(al)  (a2) 

(a3) (a4) 

(as) 

(bl) (b2) 

Fig. 19. Schematic drawings of some secondary building units. T 
atoms are represented by circles; oxygen atoms (not shown) lie 
approximately in the middle between two connected T atoms 
or are not 2-connected. Designations: (al)  1 -= 3, (a2) 1 = 3 -= 1, 
(a3) 1=6,  (a4) 1 = 6 = 3 ,  (a5) 1 = 6 = 6 ,  (bl) /"2,, and (b2) T2~. 

In this notation, u and w are positive integers with 
the only restriction that u or w can only take the 
value 1 if w or u, respectively, equals 1. All simple 
nets of this series can be derived from nets made of 
group A cages of type C(SC)r, by substituting all 
T2m units in alternate layers parallel to (001) by 
S3R's. A few illustrations: (i) with u = 1, w = 1 the 
resulting simple net is structure type 12 which can be 
derived from net 3b (made of cages with r = 0); (ii) 
with u = 2, w = 2 the resulting simple net was assigned 
structure type 13 and can be derived from net 4 (made 
of cages with r = 1); (iii) with u = 2, w = 3 the resulting 
simple net is derived from a net with alternately 
identically oriented type 4 and type 6 (made of cages 
with r = 2) hexagonal sheets. 

Non-simple nets from group C cages: All simple nets 
made of type 1-[3(C)3]u(LH)3[(S)3(C)3]w-1 2T 
trigonal cages give rise to non-simple nets when sub- 
ject to the R180 transformation. The resulting non- 
simple nets, corresponding to nets 12 and 13, were 
assigned structure types 12b and 13b. Substitution of 
all S3R's by 7"2,, units in the latter two structures 
gives nets that are made of hexagonal sheets of nets 
3 and 4, respectively, with these sheets in pairs being 
rotated by 180 ° parallel to (001). It is obvious that 
more complex stacking variations are possible. The 
transformation that replaces all T2m units by S3R's 
in a 3D net will be designated the T2/3R transforma- 
tion hereafter. 

Finally, it should be mentioned that novel nets can 
be constructed by replacing S3R's perpendicular to 
the trigonal axes by 0T trigonal cages of group F. 

Enumeration of  group 2 3 D nets of the tridymite group 

The 2D intersecting channel system formed 
between neighbouring hexagonal sheets in group 2 
frameworks is similar but not identical to channel 
system A in group 1 nets: the aperture size is also the 
S8R, but the channels are not rectilinear (designated 
channel system B ). 

Nets 55 and 60 and related non-simple structures 
will be discussed. 

Simple nets: Net 55 is made of 1-3-1 cages (as 
present in net 1). An S3R or an S9R is formed by 
connecting three cages at the same height. The net 
consists of chains of 1-3-1 cages along [001]. Three 
chains of this type, symmetry related by a trigonal 
axis, generate a column made of 3283 0T trigonal 
cages sharing S3R's perpendicular to [001]. Three 
cages of the latter type share one edge (a T2m unit 
on the chains of the 1-3-1 cages). Channels along 
[001] are restricted by S9R's,  and by S8R's (channel 
system B) perpendicular to that axis. 

Net 60 is constructed from 1-3(LH)3(S)3-1 2T 
trigonal cages [Fig. 10(cl)], also present in net 11. It 
can be derived from net 55 by replacing all T2~ units 
in alternate layers parallel to (001) by S3R's. 
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Table 5. Structural information on the enumerated nets 
that were not described in Table 4 

The letters A. B, M and N designate the sequences 3(H)6(H)3,  
3(H)6(L)6(H)3, 3(C)3 and 3(C)3(S)3(C)3, respectively; the 
notations l ( m ) l  and 1(i)1 denote the T2,. and T2, unit, respec- 
tively; RF=establ ished materials with the framework topology 
described; REF=reference to the first description of the net 
topology. 

Net 
number Repetition sequence 

Group 1 nets 
3b 1-M-I(m)I-M-1 
4b 1-N-I(i)I-N-1 
6b 1-M(S)M(S)M-I(m)I-M(S)M(S)M-1 
8b 1-N(S)N-I(i)I-N(S)N-1 
9 1-3-1(m)1-3(S)3-1 

10 1-3-1(m)l-3-1(m)l-3(S)3-1 
12b 1-M(LH)3(S)M-I(i)I-M(LH)3(S)M-1 
13 1-N(LH)3(S)N-I(m)I-N(LH)3(S)N-I 
13b 1-N(LH)3(S)N-I(i)I-N(LH)3(S)N-1 
25b 1-A(S)B-I(m)I-B(S)A-1 
26 1-A-I(m)I-B-I 

Nets constructed from face-sharing 2 T trigonal cages 
27 1-A-I(m)I-B-1 

Group 2 nets 
55b 1-3-1(i)1-3-1 
60 I-3(LH)3(S)3-1(m)I-3(LH)3(S)3-1 
55b 1-3(LH)3(S)3-1(i)l-3(LH)3(S)3-1 

Reference: (1) Bennett & Marcus (1987). 

R~ REF 

/ / 
AFS (1) 

/ / 
/ / 
/ / 

/ 
/ 
/ 
/ 
/ 
/ 

The projection onto the (001) plane for net 55 is 
represented in Fig. 16. Some important crystallo- 
graphic data are compiled in Table 4. Refinement of 
the unit cell and atomic positional parameters with 
DLS was done assuming space group P312. 

Non-simple nets: Application of the R 180 transfor- 
mation to net 55 results in a non-simple net, desig- 
nated structure type 55b. Three chains of 1-3-1 cages 
that are linked by forming T2i units [Fig. 19(b2)] 
generate a column formed by 324386 ( 0 T  trigonal 
group F)  cages sharing S3R's.  Neighbouring cages 
are displaced ½c along [001]. Channel system B is the 
widest channel system in the structure. 

No DLS refinement was done for net 60b derived 
from net 60 by the R 180 transformation. 

Structural information on all of the enumerated 
nets that were not mentioned in Table 4, is compiled 
in Table 5. 

Enumeration using secondary building units 

Simple nets: The simplest structural unit in this 
group of structures is the T2 (1-1) unit, represented 
in Fig. 19(b). A distinction has to be made between 
the T2i [Fig. 19(b2)] and the TErn [Fig. 19(bl)]  units, 
where the T atoms are symmetry related by an inver- 
sion centre and a mirror plane respectively. All nets 
of the tridymite group contain this 1-1 type. It occurs 
as single SBU in all structures of the tridymite/cris- 
tobalite polytypic series, as will be discussed else- 
where (Andries, 1990). Nets 55 and 60 can be con- 

structed from the 7"2,, and the S3R SBU's. Nets 19, 
20, 21, 22 and 25 as well as nets 23 and 24 can be 
made of the T2,,, SBU in combination with the S4R 
and/or  the S6R SBU's. 

More complex is the 1 = 3 unit (denoting an on-axis 
T atom, connected with three bonds to three T atoms 
in the first horizontal stack) [Fig. 19(al)] .  Two such 
units can be linked to form a cage when symmetry 
related by a mirror plane or an inversion centre. In 
the former case, the TsO16 ( 1 = 3 - 3  --- 1) cage of net 
2 is formed, and in the latter case the D4R (1 = 6 = 1) 
unit of net 3 results. Net 11 is constructed from the 
1 = 3 and the S3R SBU's. 

The SBU of next higher complexity is the 1 -= 3 = 1 
SBU [Fig. 19(a2)] of nets 1 and 55. We prefer the 
notation 1 = 3-= 1 instead of 4 = 1 in this structural 
group because it reflects the lattice symmetry; both 
notations are otherwise equivalent. 

Next in complexity is the 1 -  6 SBU [Fig. 19(a3)] 
which can only be symmetry related by a mirror plane 
with a similar unit to form the 7"14028 (1 = 6 = 6 -= 1 ) 
afo unit of net 4. Net 12 is generated from the 1 -- 6 
and the S3R SBU's, and both nets 5 and 7 can 
alternatively be made from the 1 - 6  and the S6R 
SBU's. 

Next is the 1 = 6 =  3 SBU [Fig. 19(a4)] which is 
symmetry related by a mirror plane in net 7, forming 
the /'20040 (1 - 6 -  3 = 3 - 6 -  1) cage, and by an 
inversion centre in net 6 to form the /'20040 (1 = 6 = 
6 - 6 =  1) cage. 

Of similar complexity is the 1 = 3(H)6  unit which 
can be symmetry related by a mirror plane to generate 
the 7"20040 cage of net 20, or by an inversion centre 
to form the highly symmetric 512 [rd (Smith, 1988)] 
cage. Net 19 is made from the 1 = 3 and the 1 = 3 (H)6  
SBU's. A schematic representation of the 1 = 3 (H)6  
SBU viewed down its trigonal axis is identical to 
Fig. 5(c). 

Next complex is the 1- - -6=6 SBU [Fig. 19(a5)], 
which can only be symmetry related by a mirror plane, 
resulting in the T26052 (1 = 6 = 6 = 6 = 6 = 1) cage 
present in net 8. Net 13 is made from the 1 = 6 =  6 
and the S3R SBU's. 

Of similar complexity is the 1---3(H)6(H)3 unit 
which can be symmetry related by a mirror plane to 
form the T26052 cage of net 21. A schematic rep- 
resentation of the 1 - 3 (H)6 (H)3  SBU viewed down 
its trigonal axis is identical to Fig. 6 ( f ) .  

The 1 = 6 = 3 = 6 = 1 SBU of the type 5 structure is 
identical to its T17034 2 T trigonal cage, which can be 
derived from the afo unit by edge stellation (Smith, 
1988). Net 5 can alternatively be generated from the 
1 = 6 = 3  and the I = 6 S B U ' s .  

Next in line is the 1 -  3(H)6(L)6(H)3  unit which 
can be symmetry related by a mirror plane to form 
the T38076 cage of net 22. Structure type 25 is gen- 
erated from both the l = 3 ( H ) 6 ( H ) 3  and the 1 -  
3(H)6(L)6(H)3  SBU's. 
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Non-simple nets: All non-simple b-type nets 
described can be generated from the same secondary 
building units as their respective simple analogues, 
keeping in mind that the T2,, and T2i units (if men- 
tioned) have to be interchanged. 

General group-specific properties 

According to the literature, various principles can be 
used for the invention of open 3D nets: (i) they should 
be characterized by low-membered ring systems and 
contain T atoms belonging to as many such rings as 
possible (Brunner, 1979; Meier, 1986); (ii) it is poss- 
ible to construct nets with wide 1D channels (Barrer 
& Villiger, 1969; Smith & Dytrych, 1984) as exemp- 
lified by Smith & Dytrych (1984) expanding their 
structure types 39 and 81 [zeolite VPI-5 has the 81(1) 
type structure (Davis, Saldarriaga, Montes, Garces & 
Crowder, 1988)]; (iii) nets constructed from isolated 
cages in general have a low framework density such 
as the structure types FAU, LTA, RHO, GME, CHA 
and KFI (Gramlich-Meier & Meier, 1982). From this, 
it should be obvious that most structures of the 
tridymite group have a framework density of 
15.0T/1000 A, 3 or lower (see Table 4). Indeed, at least 
two of the above-cited principles apply. Nets with 
the lowest framework density [nets 3(b), 4(b), 12(b), 
19, 20 and 21] satisfy all three principles. As an 
example, nets 3 and 4 have a 1D twelve-ring channel 
along [001] and they are made of isolated 2T trigonal 
cages; net 3 contains T atoms that are part of three 
and even four S4R's,  while net 4 is constructed from 
T atoms that are part of three S4R's. The void frac- 
tions (Vy) of these most open nets, calculated accord- 
ing to an experimentally derived linear relation 
between the framework density (FD) and V I by Breck 
(1973) [ Vj = ( -0 .0375FD)+0-975]  (see Table 4) are 
fully compatible with those of the most open zeolite 
frameworks (FAU, LTA). 

Based on the experimental evidence of Flanigen, 
Khatami & Szymanski (1970), most structure types 
should exhibit a unique and structure specific infrared 
spectrum because of their openness and their high 
crystallographic symmetry. 

Besides the low framework density, another group- 
specific property (less advantageous however from 
the technological point of view) is the low thermal 
stability of all phases synthesized, which is caused 
by the unstable T - O - T  bridging bond of 180 °. 
Because the cages themselves as well as their lateral 
connections are very rigid, the only possible 
framework deformation upon dehydration results in 
total collapse of the T - O - T  bridges parallel to [001], 
which are in a crystallographically very restricted 
position on the trigonal axes. The low bond density 
in the (001) plane is responsible for the sheet-like 
character of these structures. In a recent paper 
(Alberti, 1986), T - O - T  angles near 180 ° present in 

the topological symmetry of some zeolites have been 
investigated. In all cases, the angle could be lowered 
by diminishing the space-group symmetry. In the 
higher space groups, the constrained atoms had to 
be assigned a high anisotropic temperature factor in 
order to allow for spatial displacement. 

In the case of (alumino)silicates, a T - O - T  angle 
strongly deviating from the normal angle of approxi- 
mately 140 ° can often be detected by 295i HRMAS 
NMR spectroscopic measurements, according to 
empirically derived relations between T - O - T  angles 
and chemical shift values (Ramdas & Klinowski, 
1984; Engelhardt & Radeglia, 1984). This is indeed 
the case for fully ordered structures (e.g. Fyfe, Gobbi, 
Kennedy, De Schutter, Murphy, Ozubko & Slack, 
1984). 

A comparison of crystallographic properties 
between the tridymite group and the chabazite group 
of zeolites reveals that for nets 3, 4, 5, 6, 7, 8 and 12 
in Table 4, the hexagonal a parameter is similar to 
that of structures belonging to the A B C - 6  group, 
being 12-7-13-8 A, (Smith & Bennett, 1981). All these 
structures are indeed characterized by a hexagonal 
unit cell encompassing two more or less planar inter- 
linked six-rings in their projection onto (001) (see 
Figs. 14 and 15). A close inspection of Table 4 reveals 
that nets made of 2T trigonal cages with only 3MS's  
have a hexagonal a repeat of 13.2 (5) A if the projec- 
tion onto (001) of their unit cell encompasses two 
six-rings [e.g. Figs. 15(a2), (a3) and (c2)] and a < 
13.2 (5) A, if the projection onto (001) of their unit 
cell does not encompass two six-rings [e.g. Figs. 
15(al),  (el)  and 16]. Nets constructed from 2T 
trigonal cages with 6MS's  are characterized by a 
hexagonal a repeat of 15.5 (3)/~ if the projection 
onto (001) of their unit cell encompasses two nine- 
rings [e.g. Fig. 15(b)] and a < 15.5 (3) A, if the projec- 
tion onto (001) of their unit cell does not encompass 
two nine-rings [e.g. Fig. 17(b)]. 

Discussion 

In addition to the nets described before, a high num- 
ber of interrupted nets can be thought of under the 
same assumptions as for the construction of lattices 
of the tridymite group from cages enumerated in 
Tables 1 to 3. Some examples of zeolite frameworks 
based on interrupted (4; 2)-connected 3D nets are 
those of wenkite (WEN) (Wenk, 1973), roggianite 
(ROG) (Galli, 1980) and partheite (PAR) (Engel & 
Yvon, 1984). The most promising candidates for real 
frameworks are those with a minimum amount of 
interrupted nodes and hence with a sharing coefficient 
(Zoltai, 1960) as nearly as possible to 2.0. Examples 
of such hypothetical group 1 nets of the tridymite 
group should be constructed from cages with high n 
values, giving nets with six interrupted nodes per 
hexagonal unit cell. 
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We believe that several structures of the tridymite 
group could be synthesized taking into account the 
geometric data and the restricted list of structures 
discovered already with a wide range of chemical 
framework composition (silicate, aluminosilicate, 
aluminophosphate, silicoaluminophosphate, beryl- 
lophosphate). 

Nets of the present tridymite group may serve as 
trial structure models for some microporous materials 
with as yet unknown structures. A potential candi- 
date is ZSM-18 (Ciric, 1976) which is described to be 
open; a--13.2  and c = 1 5 . 8 A .  The reported low 
thermal stability (of some samples, dependent upon 
synthesis conditions), the unit-cell parameters and 
the XRD pattern (showing the highest diffracted 
intensity at lowest angle) suggest a simple frame- 
work structure of the tridymite group made of 
group A or group C 2T trigonal cages to be highly 
probable. 

As will be discussed (Andries, 1990), the dense nets 
of tridymite and cristobalite belong to the present 
group because they can be constructed by stacking 
hexagonal sheets that are made of edge-sharing 2T 
trigonal cages. The present group takes its name from 
the former mineral because its framework is built up 
with a simpler 2 T trigonal cage than the cristobalite 
net is. 

Novel framework topologies can be derived by the 
application of three classes of transformations to nets 
of the present group: 

(i) Transformations that change the stacking 
sequence of the trigonal columns in the net but that 
do not alter the nature of their lateral connections. 
The resulting nets remain hexagonal; 

T 2 / 3 R :  replaces all T2m units by S3R's; 
cr transformation(s) (Shoemaker, Robson & 

Broussard, 1973) at (a) plane(s) perpendicular to the 
trigonal axis (e.g. the transformation from net 19 into 
net 20); 

R 180: rotates neighbouring hexagonal sheets by 
180 ° parallel to (001) (e.g. the transformation from 
net 4 into the AFS type framework). 

(ii) Transformations that do not alter the stacking 
sequence of the trigonal columns in the net but that 
do change the nature of their lateral connections. The 
resulting frameworks are not hexagonal, unless the 
transformation in itself preserves the hexagonal sym- 
metry [e.g. (a) the transformation of net 82a of Ben- 
nett & Smith (1985) into the tridymite net (Gibbs, 
1926) by cr -~ transformations at planes parallel to the 
hexagonal axis; (b) some novel hypothetical nets can 
be derived from structures of the tridymite group by 
inserting S 4 R  units between adjacent 2T trigonal 
cages]; 

tr transformation(s) at (a) plane(s) not running 
perpendicular to the trigonal axis [ e.g. the transforma- 
tion from the AFI type framework into AEL (e.g. 
Bennett, Richardson, Pluth & Smith, 1987)]; 

insertion of S 4 R ' s  between (not every two) adja- 
cent 2T trigonal cages in group 1 nets of the tridymite 
group. 

(iii) Transformations that alter the stack sequence 
of the trigonal columns as well as their lateral connec- 
tions. In the most general case, the resulting nets are 
not hexagonal; 

any combination of transformations noted under 
(i) and (ii); 

substitution of ring units by (trigonal) cages. 
Two novel types of transformations that are 

specifically applicable to nets of the tridymite group 
were derived, one belonging to class (i) and another 
belonging to class (ii) (Andries & Bosmans, 1990). 

Several properties characteristic for nets of the 
tridymite group have been observed during the struc- 
ture investigation of zeolite Linde Q (Andries, De 
Wit, Grobet & Bosmans, 1990). 
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Abstract 

Forty-two hypothet ical  3 D nets are derived by apply-  
ing four  types of  t ransformat ions  (or combinat ions  
thereof)  to the previously described tr idymite group 
of  structures. Two novel t ransformat ions  are pro- 
posed,  one preserving the (hexagonal  or or thorhom-  
bic) symmetry  and another  converting the hexagonal  
symmetry  into or thorhombic .  Correspondingly ,  
groups of  hypothet ical  3D f ramework  structures are 
derived. The propert ies of  f rameworks  belonging to 
these groups are compared  and discussed. 

Introduction 

Following the enumera t ion  of  (4; 2)-connected 3D 
nets (this notat ion denotes f ramework  structures 
extended in three-dimensional  space with every 
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f ramework  T atom being te t rahedral ly  coord ina ted  
by oxygen atoms,  where every oxygen a tom is shared 
between two T atoms) of  the tr idymite group 
(Bosmans & Andries,  1990), this paper  describes 
related structure types obtained by applying 
geometrical  t ransformat ions .  Examples  of  such 
geometrical  t ransformat ions  appl icable  to (4 ;2) -  
connected 3D nets a n d / o r  smaller  structural  subunits  
are (i) the sigma (tr) t raf isformation (Shoemaker ,  
Robson & Broussard,  1973), (ii) sl ipping schemes 
(Sato & Got tardi ,  1982) and (iii) the stellation, the 
t runcat ion and  the addi t ion (Smith, 1988). 

Detai led structual informat ion  on established 3D 
f ramework  structures and  their secondary  bui lding 
units [SBU, Meier  (1968)] can be found in the recently 
revised At las  o f  Zeol i te  Structure Types (Meier  & 
Olson, 1987) and in a comprehensive  review (Smith,  
1988). 
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